博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
机器学习之特征工程
阅读量:5098 次
发布时间:2019-06-13

本文共 3677 字,大约阅读时间需要 12 分钟。

1 特征工程是什么?

  有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。通过总结和归纳,人们认为特征工程包括以下方面:

 

 

  

特征处理是特征工程的核心部分,sklearn提供了较为完整的特征处理方法,包括数据预处理,特征选择,降维等。首次接触到sklearn,通常会被其丰富且方便的算法模型库吸引,但是这里介绍的特征处理库也十分强大!

 

  本文中使用sklearn中的IRIS(鸢尾花)数据集

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html#sklearn.datasets.load_iris

 

来对特征处理功能进行说明。IRIS数据集由Fisher在1936年整理,包含4个特征(Sepal.Length(花萼长度)、Sepal.Width(花萼宽度)、Petal.Length(花瓣长度)、Petal.Width(花瓣宽度)),特征值都为正浮点数,单位为厘米。目标值为鸢尾花的分类(Iris Setosa(山鸢尾)、Iris Versicolour(杂色鸢尾),Iris Virginica(维吉尼亚鸢尾))。导入IRIS数据集的代码如下:

 

1 from sklearn.datasets import load_iris  2   3 #导入IRIS数据集 4 iris = load_iris() 5 6 #特征矩阵 7 iris.data 8 9 #目标向量 10 iris.target

 


 

 

2 数据预处理

  通过特征提取,我们能得到未经处理的特征,这时的特征可能有以下问题:

  • 不属于同一量纲:即特征的规格不一样,不能够放在一起比较。无量纲化可以解决这一问题。

  • 信息冗余:对于某些定量特征,其包含的有效信息为区间划分,例如学习成绩,假若只关心“及格”或不“及格”,那么需要将定量的考分,转换成“1”和“0”表示及格和未及格。二值化可以解决这一问题。

  • 定性特征不能直接使用:某些机器学习算法和模型只能接受定量特征的输入,那么需要将定性特征转换为定量特征。最简单的方式是为每一种定性值指定一个定量值,但是这种方式过于灵活,增加了调参的工作。通常使用哑编码的方式将定性特征转换为定量特征:http://www.ats.ucla.edu/stat/mult_pkg/faq/general/dummy.htm

  • 假设有N种定性值,则将这一个特征扩展为N种特征,当原始特征值为第i种定性值时,第i个扩展特征赋值为1,其他扩展特征赋值为0。哑编码的方式相比直接指定的方式,不用增加调参的工作,对于线性模型来说,使用哑编码后的特征可达到非线性的效果。

  • 存在缺失值:缺失值需要补充。

  • 信息利用率低:不同的机器学习算法和模型对数据中信息的利用是不同的,之前提到在线性模型中,使用对定性特征哑编码可以达到非线性的效果。类似地,对定量变量多项式化,或者进行其他的转换,都能达到非线性的效果。

  我们使用sklearn中的preproccessing库来进行数据预处理,可以覆盖以上问题的解决方案。

 

2.1 无量纲化

  无量纲化使不同规格的数据转换到同一规格。常见的无量纲化方法有标准化和区间缩放法。标准化的前提是特征值服从正态分布,标准化后,其转换成标准正态分布。区间缩放法利用了边界值信息,将特征的取值区间缩放到某个特点的范围,例如[0, 1]等。

2.1.1 标准化

  标准化需要计算特征的均值和标准差,公式表达为:

  使用preproccessing库的StandardScaler类对数据进行标准化的代码如下:

1 from sklearn.preprocessing import StandardScaler 2 3 #标准化,返回值为标准化后的数据 4 StandardScaler().fit_transform(iris.data)

2.1.2 区间缩放法

  区间缩放法的思路有多种,常见的一种为利用两个最值进行缩放,公式表达为:

  使用preproccessing库的MinMaxScaler类对数据进行区间缩放的代码如下:

 

 

 

3 特征选择

  当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。通常来说,从两个方面考虑来选择特征:

  • 特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用。

  • 特征与目标的相关性:这点比较显见,与目标相关性高的特征,应当优选选择。除方差法外,本文介绍的其他方法均从相关性考虑。

  根据特征选择的形式又可以将特征选择方法分为3种:

  • Filter:过滤法,按照发散性或者相关性对各个特征进行评分,设定阈值或者待选择阈值的个数,选择特征。

  • Wrapper:包装法,根据目标函数(通常是预测效果评分),每次选择若干特征,或者排除若干特征。

  • Embedded:嵌入法,先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。类似于Filter方法,但是是通过训练来确定特征的优劣。

  我们使用sklearn中的feature_selection库来进行特征选择。

3.1 Filter

3.1.1 方差选择法

  使用方差选择法,先要计算各个特征的方差,然后根据阈值,选择方差大于阈值的特征。使用feature_selection库的VarianceThreshold类来选择特征的代码如下:

 

 

4 降维

  当特征选择完成后,可以直接训练模型了,但是可能由于特征矩阵过大,导致计算量大,训练时间长的问题,因此降低特征矩阵维度也是必不可少的。常见的降维方法除了以上提到的基于L1惩罚项的模型以外,另外还有主成分分析法(PCA)和线性判别分析(LDA),线性判别分析本身也是一个分类模型。PCA和LDA有很多的相似点,其本质是要将原始的样本映射到维度更低的样本空间中,但是PCA和LDA的映射目标不一样:PCA是为了让映射后的样本具有最大的发散性;而LDA是为了让映射后的样本有最好的分类性能。

http://www.cnblogs.com/LeftNotEasy/archive/2011/01/08/lda-and-pca-machine-learning.html

 

所以说PCA是一种无监督的降维方法,而LDA是一种有监督的降维方法。

 

4.1 主成分分析法(PCA)

  使用decomposition库的PCA类选择特征的代码如下:

1 from sklearn.decomposition import PCA 2 3 #主成分分析法,返回降维后的数据 4 #参数n_components为主成分数目 5 PCA(n_components=2).fit_transform(iris.data)

4.2 线性判别分析法(LDA)

  使用lda库的LDA类选择特征的代码如下:

1 from sklearn.lda import LDA 2 3 #线性判别分析法,返回降维后的数据 4 #参数n_components为降维后的维数 5 LDA(n_components=2).fit_transform(iris.data, iris.target)

 

4.3 回顾

说明
decomposition PCA 主成分分析法
lda LDA 线性判别分析法

 

 


5 总结

  再让我们回归一下本文开始的特征工程的思维导图,我们可以使用sklearn完成几乎所有特征处理的工作,而且不管是数据预处理,还是特征选择,抑或降维,它们都是通过某个类的方法fit_transform完成的,fit_transform要不只带一个参数:特征矩阵,要不带两个参数:特征矩阵加目标向量。这些难道都是巧合吗?还是故意设计成这样?方法fit_transform中有fit这一单词,它和训练模型的fit方法有关联吗?

 

 

 


 

 

 

参考资料:https://mp.weixin.qq.com/s?__biz=MzA4MTk3ODI2OA==&mid=2650341294&idx=1&sn=a7937f3b8f3d44bfb4980ffb071d971f&chksm=8780e95db0f7604b341ec5e4344add99a551535247e7121699783e7fd3388158742146684e21&mpshare=1&scene=1&srcid=0911EcBve40TFgXyveorAS6h#rd

转载于:https://www.cnblogs.com/shujuxiong/p/10423740.html

你可能感兴趣的文章
Activiti入门 -- 环境搭建和核心API简介
查看>>
struts.convention.classes.reload配置为true,tomcat启动报错
查看>>
MySQL的并行复制多线程复制MTS(Multi-Threaded Slaves)
查看>>
Django中间件
查看>>
xcode 5.1安装vvdocument
查看>>
好玩的-记最近玩的几个经典ipad ios游戏
查看>>
MySQL更改默认的数据文档存储目录
查看>>
替代微软IIS强大的HTTP网站服务器工具
查看>>
6.5 案例21:将本地数据库中数据提交到服务器端
查看>>
PyQt5--EventSender
查看>>
android 通过AlarmManager实现守护进程
查看>>
Sql Server 中由数字转换为指定长度的字符串
查看>>
win7下把电脑设置成wlan热
查看>>
Java 多态 虚方法
查看>>
jquery.validate插件在booststarp中的运用
查看>>
java常用的包
查看>>
PHP批量覆盖文件并执行cmd命令脚本
查看>>
Unity之fragment shader中如何获得视口空间中的坐标
查看>>
支持向量机——内核
查看>>
MFC注册热键
查看>>